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<3 = vorticity, and blade thickness are treated as continuous !

sheets, making it necessary to determine the Cauchy
principal value of the improper integrals expressing
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This report presents the development of a propeller design
method that treats the blades as lifting surfaces, The method
has:been programmed on an IBM 7090 computer and is available
for design calculations,

The work was undertaken to make available at the U, S, Naval
Ordnance Test Station the most up-to-date technique for the de-
sign of marine propellers, It was done from September 1961 to
October 1963 under Bureau of Naval Weapons Task Assignment
RUTO-BE-000/216- l/R009-01-03, Problem Assignment 428,

The considered opinions of the Propulsion Division are
represented in this report.

Released by Under authority of
J. W. HOYT, Head, D, J. WILCOX, Head,
Propulsion Division Underwater Ordnance
16 December 1963 Department

NOTS Technical Publication 3399
NAVWEPS Report 8442

Published by ..,.........Underwater Ordnance Department
Manuscript LI I A A S N I ST I IR S ST A S AP S S S PSP 807//MS"~153
Collation svsevvvevses.. Cover, 26 leaves, abstract cards
First printing o.cvovc0eveeecssseness 165 numbered copies
Security classification «vveeevescaecesess UNCLASSIFIED




NAVWEPS REPORT 8442

CONTENTS

NOmMenclatlre s sveusncsuessavesrssersovstssscrssscssososesesasssns IV
INtrodUction seseesesessvrcecsccenessssnsossorsssanessscrsoonas
Representation of Propeller Systemn by Singularity Distributions....
Spatial Location-of Singularities Representing Propeller System....
Coordinate Systems Used in Analysig.sceesveoccoansoseocsscconnes
Approach Taken in Mathematics of Solution .seveseessessssoscrons.
Desired-Component of Induced Velocity ccoovvraseonivonsrcesnnnas

Calculation of Normal Component of Induced Velocity cioiesvoeanas
Velccity Due to Bound Circulation (WE)B seeiecrerscercasacnnee
Velocity Due to Free Vorticity (WY)p coeeeeeescecccsorssnones 22
Velocity Due to Blade Thickness (W¥)T ceeveevencancassssnses 35

Determination of Camber Lines Firom Normal Component of
Induced velocity LR RN S I B I BN BN I B BN BRI I BT A B AR RN BN BB R R BE BN N N N B BN A 42

oy O v W VDN

COn’!Puter Programstttl..'..QOIOOO0'.0'...'.‘l......l..“...“ 43
Restriction on Blade Shape cosevvescrcesessissroseronnnsoscsoses 44
Discussion LRI Y B I I B A SRR B Y BRI R IS N B B B AR IR S R B Y RN R R IR B SR BN N IE AN N A N A 45

Conclusions and Future Work .s..veecieccrnsscsnsscncscacsssnses 49

iii

o v e e e - e




NAVWEPS REPORT 8442

dA

o B

fl'fz""’fs

¥R

(>
£ =
Xl < E <a < o

3
[~4

iv

NOMENCLATURE
Chord

Chordwise coordinate measured from leading edge
(Fig. 3a)

Infinitesimal area of helical sheet
Infinitesimal length of vortex line element

Propeller diameter

v C

—— — rR

vg D

Functions of x (Eq. 10)

Number of blades

Nondimensional bound circulation
Nondimensional camber offset (Fig, 13)

Ratio of the strength of a line element of 'ice vorticity
at any chordwise station to that at the traii'ng edge

Distance from the stacking line to the leading edge of
blade section (Fig, 3a)

Radial coordinate

Katio of percent thickness uf l.’ade section at any span-
wise station to percent thickness at reference station

Propeller radius

Distance from a point on one of the blades to point p
Local axial inflow velocity to propeiie*

Forward speed of propeller relative {2 undisturbed fluid
Relative velocity of blade section and fluir {Fig, 12)
Induced velocity

Normal component of induced velocity

Contribution to W? from the singularity region
Nondimensisnal radial coordinate (Eq. 7)

Nondimensional radial coordinate measured ‘rom center
of chordwise strip dor center of singularity -~egion
(Fig.7, 9, 11)
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X, Y, Z Nondimensional rectangular coordinate system at pro-
peller axis (Eq.7)

. X', Y', Z' Rectangular coordinate system at propeller axis (Fig., 1)
f'\, Y, Zv Rectangular coordinate system on helical sheet (Fig. 2)
vy Nondimensional chordwise coordinate (Eq.4)

Ya Nondimensional chordwise coordinate measured from
center of spanwise strip or center of singularity region
(Fig.4, 7)

z Nondimensional half-thickness of blade (Fig. 12)

]

Angle defining points on helical sheets (Fig. 1)

Angle defining points of helical sheets measured from
center of singularity region

Pitch angle of helical sheets (Fig, 1)

Variation of pitch angle from lifting-line value
Bound circulation

Strength of vortex line element

Source strength

x tan f3

Surface source density

Source potential

Angle describing stacking-line locations (Fig. 1)

€ €& 9O F » 3 WM< ™ P

Angular velocity of propeller

SUBSCRIPTS
B Due to bound circulation
F  Due to free vorticity
p Corresponding to the singularity point p
T  Due to blade thickness
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INTRODUCTION

The existing marine propeller design methods that can be utilized
without a high-3peed computer are normally built up from optimum
propeller lifting-line theory, two-dimensional slender-airfoil theory,
and correction factors applied to the two-dimensional results to account
for three-dimensional effects, Of these methods the most comprehen-
sive is probably that of Eckhardt and Morgan (Ref. 1),

Since these rnethods are applied to non-optimum propellers of es-
sentially arbitrary blade shape and even to wake-adapted propellers,
close examination of their underlying aosumptions raises some ques-
tion about their ability to produce satisfactory propeller designs. For
example, the induced velocities at the lifting line predicted by optimum
propeller theory are positive at all spanwise stations on the blade.
However, as Lerbs (Ref, 2) points out, and as is substantiated by the
present work, non-optimum propellers may and normally do have
rather large negative induced velocities near the hub and the tip. Also,
the camber correction factors that usually have been obtained from the
work of Ludwieg and Ginzel (Ref. 3 and 4) are applied to both free-
running and wake-adapted propellers of arbitrary blade shape, circu-
lation distribution, and advance ratio. Since the Ludwieg and Ginzel
calculations were made for only a few cases of free-running propellers.
rather crude interpolations on extrapolations are necessary. Further-
more, the pitch correction factor proposed by Lerbs (Ref.5) and used
in the Eckhardt and Morgan method is derived on the assumption that
the propeller is developiag lift by angle of attack and is then applied to
propellers developing lift by camber. Inconsistencies such as these
may be the cause of the inadequacies of these methnds, because ex-
perience has shown that they do not always lead to satisfactory pro-
peller designs, particularly when cavitation resistance is concerned.

Lack of confidence in such approximate methods has prompted a
considerable amount of work in the past few years on lifting-surface
theory and design methods for marine propellers, Work in the United
States has been done by Pien (Ref. 6) and Kerwin (Ref, 7), in the Nether-
lands by Sparenberg (Ref, 8) and by van Manen and Bakker (Ref,9), in
England by Cox (Ref, 10), and in Japan by Nishiyama and Nakajima
(Ref. 11), In all these studies, however, no extensive calculations
were made that would permit the design of a non-optimum, wake-
adapted propcller with a specified blade shape and circulation distri-
bution, In fact, the number of parameters that would have to be varied
(wake fraction, bladc shape, circulation distribution, number of blades,
and advance ratio) and the long computing times nceded for such calcu-
tions make such an investigation impractical, Hence, to design

B A A AR At A P L 2 ksl
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propellers treating them as lifting surfaces, the facilities must be at
hand'to carry out the dasign calculations, To this end, the work de-
4¢i ibede i tirte report was andertaken.s vt

Propellers for torpedoes are of primary interest at the Naval
Ordnance Test Station. Since these propellers operate in a wake, and
since good cavitation resistance dictates circulation distributions that
are not optimum, a lifting-surface design method that is applicable to
non-optimum, wake-adapted propellers has been developed. This de-
velopment goes one step beyond any of the works referenced above in
that the effect of the blade thickness is accounted for.

REPRESENTATION OF PROPELLER SYSTEM
BY SINGULARITY DISTRIBUTIONS

Each propeller blade is represented by a continucus sheet of vor-
ticity cred.ing the bound circulation and by a continuous sheet of
sources and sinks representing the blade thickness, Since elements
of vorticity cannot end in space, spanwise variations in the bound cir-
culation give rise to elements of free or shed vorticity in the fluid that
are left in helical paths along and behind the propeller, The shed vor-
ticity for each blade is represented by a continuous helical sheet of
vorticity starting at the leading edge of the blade and extending back to
infinity, In this development, the hub boundary condition has been ig-
nored and there are therefore no singularities representing the hub,

SPATIAL LOCATION OF SINGULARITIES
REPRESENTINCG PROPELLER SYSTEM

Before the calculation of the v.iacities induced by the propeller can
begin, the singularities representir the propeller system must be
properly located in space, Lerbs' induction factor method (Ref. 2) for
the lifting-line solution of the moderat=iy loaded, non-optimum, wake-
adapted propeller offers the best approxiination to the spanwise pitch
distribution of the helical sheets upon which the singularities represent-
ing the propeller should be located. In ract, for the free-running. un-
skewed, optimum or lightly loaded non-optiraur propeller with negli-
gible blade thickness, symmet=ical blade shape, and symmetrical
chordwise loading, the spanwise pitch distribution given by Lerbs'
lifting-line solution is identical to the spanwise pitch distribution of the
blade chordlines given by the lifting-surface solution. For other condi-
tions, the pitch of the blade chordlines will usually differ only slightly
from the pitch of the helical sheets given by Lerbs! lifting-line solution,

Since the object of the lifting-surface solution is to detormine the
camber lines, it is not possible to distribute the vorticity representing
the bound circulation on the camber lines, Instead, the vorticity is
distributed.on the helical sheets from Lerbs' solution. This apgroxi-
mation is similar to the one made in two-dimensional slender-airioil
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theory in which the circulation is distributed along the chordline when
the camber lines are computed. Sincg oxly samzil.amountsof: comber.
are needed in marine propellers to generate the desired lift, this ap-
proximation can lead to no serious error in computing the camber lines,
The sources and sinks representing the blade are also distributed on

the helical sheets when the effects of blade thickness are computed,

Since the free or shed vorticity in the fluid is left behind in helical
paths whose pitch is determined by the relative flow of the propeller
and fluid, the elements of free vorticity fall naturally on helical sheets
that are very close to or identical to those given by Lerbs' lifting-line
solution. Hence, when the effect of the free vorticity is computed, it
is distributed on the helical sheets from Lerbs' solution.

COORDINATE SYSTEME USED IN ANALYSIS

Figure 1 shows the coordinates used to describe the helical system
upon which the singularities are distributed. The angles, {,, which
are given by

2 m=1, 2, +.., 8)

where g is the number of blades, describe the lines where the propeller
blades intersect the plane X' = 0, These lines are referred to as the
stacking lines and are chosen coincident with the lifting lines of Lerbs'
solution. For unskewed propellers they will also be chosen coincident
with the line passing through the centers of lift of the blade sections,
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One line element at a constant radius of the helical sheet streaming
back from cne of the propeller stacking-line locations is shown, This
element makes the pitch angle g with respect to the plane X' = 0. The
coordinates of a point on the helical sheets in the rectangular X', Y', Z°
coordinate system can then be written

X'=ar tanf
Y'= -r sin(y, + o)
Z'=r cos Yy + a) (1)

Another coordinate system needed in the analysis, the rectangular
X', ¥', Z' system, is shown in Fig.2. In this system the Z' axis inter-
sects the X' axis perpendicularly, the X' axis is tangent at point p to a
constant radius line element of the helical sheet streaming back from

FIG. 2,

the stacking-line location ¢} = 0, and the Y' axis is normal to this line
element at point p. A vector having components AX, Ay, AZ in the
X', Y', Z' coordinate system will have components in the X', Y!, Z!
coordinate system given by

A% = Ay sin ﬁp - Ay cos ap cos pp - Az sinup cos pp
Ay

Ay cos pp + Ay cosay sin pp t+ Ag sino.p sin Bp
AZ

-Ay sinap + Az cosap (2)

e e o A e w7 7
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APPROACH TAKEN IN MATHEMATICS OF SOLUTION

When the velocities induced by the singularities representing the
propeller system are computed, double integrals must be solved. The
integrands are such that integration cannot be performed analytically
with respect to either of the variables, In order to bypass the diffi-
culty of performing numerical double integration, the region to be in-
tegrated is divided into strips sufficiently narrow that certain approxi-
mations hold accurately across them. These approximations, together
with some restrictions put on the form of the circulation distribution,
allow integration to be performed across the strips analytically. Thus,
instead of a numerical double integration there is an analytical integra-
tion across the strip, a numerical integration along the strip, and a
summation over the strips, This process is applied everywhere except
in a small region around the point where the velocity is desired, since
a singularity occurs in the integrand at that point, making numerical
integration through the point impossible. Integration is carried out
analytically over this small singularity region to obtain the Cauchy
principal value. To make an analytical integration possible over this
region, several approximations were necessary which in essence
amount to (1) assuming a linear variation of most of the variables ovex
the region, plus (2) discarding third and higher-order terms in the
small nondimensional coordinates describing the distance of a point
from the singularity point, The check solutions run to date showed
that the region may be chosen sufficiently small that these approxima-
tions yield a good value of the contribution of the region to the velocity,
without being so small that the aumerical integration in the area im-
mediately surrounding the region cannot be carried out accurately.

An important feature of this approach is that the point where the
velocity is desired, i,e,, the singularity point, is always chosen at
the center of the strips and at the centroid of the small region sur-
rounding the singularity, Also, all approximations are expanded about
the center of the strips or the centroid of the singularity region, By
doing this, the accuracy of the method is greaily enhanced and comput-
ing times are reduced since the nuinber of points needed to obtain an
accurate numerical integration is smaller,

Two restrictions, mentioned above, were placed on the circulation
distribution to facilitate integration across the strips: (1) the chord-
wise distribution of circulatior. must be made up of straight line seg-
ments, and (2) the spanwise distribution of circulation must lend itself
to an accuratc piecewise approximation by parabolic sections. Since
fairly optimum chordwisc distributions of circulation from the stand-
point of cavitation resistance can be made up of straight line segments,
and since most practical spanwise circulation distributions do not have
extremely large third derivatives, these restrictions offer no serious
restriction on the generality of the method.

R LAy At mpetei gy e eivigg ey
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DESIRED COMPONENT OF INDUCED VELOCITY

Because the component of induced velocity parallel to the blade-
section chordline will normally be very small compared to the relative
velocity of the blade section and the still fluid, it may be neglected in
the boundary condition when the camber lines are being determined,
Only the component of induced velocity normal to the tlade-section
chordline is needed to determine the camber-line boundary condition.
This approximation is identical to that used in slender-airfoil theory,
Assuming that all induced velocities are to be computed on the blade
Y = 0, the normal component of induced velocity, denoted by W%, will
be in the Y' direction shown in Fig. 2. There are three contnbutlons to
W¥: the one resulting from the bound circulation (W¥)B, the one re-
sulting from the free vorticity, (WY)pF, and the one resulting from the
blade thickness (W¥)t. Hence,

Wy = (Wyls + (WY)r +(WY)T (3)

CALCULATION OF NORMAL COMPONENT
OF INDUCED VELOCITY
VELOCITY DUE TO BOUND CIRCULATION (WY)B

The position of points on a blade section are shown in Fig, 3a, where
C is the chord, d is the distance from the leading edge, and L is the

- C >J| )
d
Cd ~ y=-—

L— L— Stacking line

FIG. 3a.

distance from the stackmg line to the leading edge. A nondimensional
chordwise coordinate is defined as

y=—= (4)
C

The location of each vortex line element of the bound circulation sheet
is given by the condition y = Constant, as illustrated in Fig. 3b for an
unskewed propeller and in Fig. 3c for a skewed propeller. This choice
of the location of an element of the bound circulation sheet is the most
convenient one, since elements of free or shed vorticity arise only
from a change in the spanwise distribution of circulation. For the
other methods of locating the elements of the bound circulation sheet,

> - o . pum e e v 2 A
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(Blade shown flat here and in follow-
ing sketches to simplify drawing)

Stacking line ———s Stacking line ]

Vortex line
element of
bound cir-

Vortex line
element of
bound cir-
culation
sheet

y = Constant ~© y = Constant

Unskewed Propeller Skewed Propeller
FIG. 3b, F1G. 3c.

such as that shown in Fig, 3d, elements of shed vorticity arise not only

- from a change in the spanwise distribution of circulation but also as a
result of blade taper. The added complication of having to consider
both these effects in the calculations involving the free vorticity make
such a method impractical,

Vortex line 4/-—
elements of
bound cir-
culation
sheet

Impractical Representation
of Bound Circulation

FIG. 3d,

Referring to Fig. 1 and measuring the distances d and L, along the
constant radius helical line with the stacking line in the plane X' = 0,
the following relation is obtained between a and y and r.

Ccosp Lcosp
a=y -
r r
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This relationship maps the propeller blades onto the helical sheets,
Substituting this-relationship into Eq. 1 yields the coordinates in the
X', Y', Z' system of points on the blades,

X! = yC sinp ~ L sinf
Ccosfy Lcosp
Y'= -r sin(tpm +y -
r r
Ccosf Lcosp
Z'=rcosiy, ty - (5)
r r

Letting d4 be an infinitesimal length of a vortex line element making up
the bound circulation sheet, as illustrated in Fig, 3b and 3¢, the com-
ponents of df in the X', Y', Z' system are obtained with Eq. 5 as follows.

dty dx

dr dr

y =Constant

dtx  d(C sinp) d(L sinp)

= y -
dr dr dr
dty dY!
dr dr |y=Constant
dty Ccosd Lcosf 4(C cosp) Ccosp
—= eco8| Yy, + Y - y -
dr r r dr r
d{L cosP) L cosP Ccosf L cosf
- - At - sinl g, +y -
dr r r r
dty dz'
dr  dr |y=Constant
deg Ccosp Locosp d(C cosp) Ccosp
— = -gin Y. + Y - y -
dr \ r r dr r
d(L cosf) L cos B Ccosp L cosp
- - +cosid +y -
dr r r r
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Letting the subscript p denote the point p where the normal compo-
nent of velocity is desired, and remembeving that.all velacitirg.aze to...
be computed on the blade ¢} = 0, the coordinatesinmthe X', Y, Z' sys-
tem of the point p are, from Eq. 5,

Xp = yp(C sinﬁ)r=rp - (L Si“p)r=rp

Yi, =-rp sinap

N

i, = rp cos ap (6)

C cosp Lcosp
S e M e
r=rp r=rp

The X', Y', Z' components of the distance, S, from an element of
vorticity on one of the blades to the point p are obtained from Eq.5
and 6.

where

S = XI'J - yC sinp + L sinf

Ccospp Lcosf
Sy=Yp+trsinjyy +y -
r r
Ccosp Lcosp
SZ=Z,:)-rcosq:m+y - -
r

Nondimensionalizing with the propeller radius, R, and diameter, D,
and introducing the 'nondimensional coordinates,

r X! Y!' yA
X = —, X = —, = —_—, Z = e (7)
R R R R

the components of df and S may be written

diy
— =yi5 - fg
Rdx

dty

= = -cos Yy, + yf3 - f4)ly(f7 - £3) - (£g - £4)] - sin (Y, + yE3 - £4)

diz

Fo = ~sin ($py, + yf3 - f4)[y(f7 - £3) - (fg - f4)] + cos (Y + yf3 - £4)
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Sx
-—= xp - yi) + 13
Sy
-—E-= Yp+x sin(\l‘m + yf3 - f4)
Sz
-;: Zp - x cos (Y, + yf3 - £4)
where
Xp = ¥pfip - f2p
Zp = xP cos ap
ap = ¥pf3p - f4p
and where
C
fy = 2— 8in f1. = (£1)_
L
f2 = 2— 8inf, f25 = (£2)..
2 5 P 2p = ( 2)x_xp
2(C/D) cos B
f3 = f3, = (f3)__
3 < ’ 3p 3 X=Xp
2(L/D) cosp
f4 = ——-, f4p = (f4) o
x p
df2(C/D) sinp]
. f5 = ™ , f5p = (f{:‘,)x;_xp
d[2(L/D) sinp]
fo = fop = (fo) .
ax . P x=Xp
d[2(C/D) cosB]
i” = e ’ £7P = (£7)x=xp
¢ d[2(L/D) cosp] @
g = f = Y. _
dx ! 8p 8 x—xP
1C

ot e+ IR
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(9)

(10)
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' ‘Breaking the blade into spanwise strips bounded by lines y = Constant,
‘ as {llustrated in Fig. 4, there may be written for each strip

Y:?n"'}.d" . T K {l}.,\:'

The subscript n takes on the values 1, 2, 3, ... , 8, where 8 is the
number of strips. Substituting Eq. 11 into Eq, 8, using the trigonometric

Lines along y = Constant

'
. \
| '

¥l l—-l‘l‘ — Yo > = ¥Yn-1

Y2
Y3

FIG. 4.,
identities for the sin and cos of the sum of two angles, and re-

:grg::\g the maximum half-width of the strips, (y,) . = (Ayn/Z)max

cos (Yafa) e F 1 sin(yafs) . = (vaf3) oo (12)

the expressions for the components of d¢ and S in the X', ¥Y', Z' co-
ordinate system become

atx
..-_...:yf-f + fey
Rdx n'5 " *6 T 157

AUy
Rdx = [fg -4 - yqlfy - f3)]cos(by, +yuf3 - £4) - sin(l, +y,f3 - £4)

-{lfg - £4 - yulf7 - £3)] €3 sin(b, +y, £ - £4) +1q cos{d, +yf3 - f4)}yA

+ 367 - £3) sin(d, + yofs - £4)¥8

diz
;;—x = [fg-f4 - yo{fq-f3)] sin(y_ +y f3-f4) +cos(y +y f3-1,)
+{{fg - £4 - ynlf7 - £3)}£3 cos(Wy, + yof3 - £4) - £7 sin{d, +ynf3 - £4)}ya

- £3(f, - £3) cos{Y, + y,f3 - £4)y2

11
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Sx
. R‘- :_.;Cp'_.;‘ -).“‘G }‘*.‘f‘f . ‘g‘,f‘; Pt s ol e

Sy
‘?{ = Yp + x sin(yp, + ypf3 - f4) + xf3 cos(Y, + y,f3 -~ f4)y,

Sz
—I—{— = Zp -X COS(\pm + Ynfj - f4) + xf3 sin(xpm + Ynf3 - f4)yA (13)

The Biot-Savart law is used to compute the induced velocity due to
the vorticity representing the bound circulation, This law is stated

L 1 p_ dixS
W= e—

r (14)
4n Jo s3

where df is an infinitesimal length of an element of vorticity, S is the
distance from the element of vorticity to the point where the velocity,
W, is desired, and T is the strength of the vortex elemznt., Since only
the normal component of W, i.e., Wy, is desired, there is obtained

from Eq. 14
1 _ SXdt7Z - SZAUX
Wy =— f r (15)
4r JY s3

The strength, T, of the vortex element as a function of the spanwise

and chordwise distribution of bound circulation is determined as follows.,
Specify a spanwise distribution of bound circulation, I', extending from
the hub, x = x,, to the tip, x = 1, as illustrated in Fig.5. Assuming

Pmax = Gmax™Dvs

GnuDvg

=

Xh 1.0

FIG. 5.
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that the shape of the chordwise loading is independent of spanwise posi-
tion, it is necessary to specify it at only one positton, Thus, specify a
chordwise distribution of bound circulation at the spanwise position

[ = I'max: a8 shown in Fig. 6,

0
> ]
e Area=TI'max=GmaxnDvg
gl..
o
g N
g,
c..E )
ol 0 1.0
y
FIG. 6.

The strength, I, may then be written

I dlpay

' = c——nx—

Fmax dy

dy

Nondimensionalizing the bound circulation using the propeller diameter,
D, and the forward velocity of the propeller relative to the undisturbed
fluid, vy,

r
G =

7Dvg

the expression for T becomes

y G  dGmax

— = dy (16)
"Dvg  Gmax dy

Restricting the chordwise distribution of bound circulation to one that
can be made up of straight line segments, as discussed previously,
Eq. 16 may be written for each spanwise strip

(dcmax [ 4%Gmax

r G ) )
‘ 2
dy ly=yn \ dv® Jy=yn

mDvg  Guax

YA] dy, (17)

Equation 2 allows the -components of df and S in the X', ¥', Z' system
to be determined from their components in the X!, Y', Z' system,

13
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given by Eq. 13, Substituting these X', ', Z' components into Eq. 15 and
using Eq. 17, the expression for the normal component of induced velocity
due to the bound circulation becomes

(Wo)n 1 s p,l G Ay, /2
R N
Vs 2 m=1 n=1 J/xh Gmax -Ayn/?.
2 3 4
AgH, HAQK +A H )y, HA K A H )ySHA K HASH VY +A 3Ky,
213/2 R/
(a+by, +cyy)
where
dGpmax
H, =
dy ly=yy
a%G ax
S e
dy® ly=yn

a = 2Ypx sin(mtynf3-£4)-2Zpx cosllm+ynt3-Ea)HXp-ynf 1+62) +Y B2t
b = 2Ypxf3 cos(\pm+ynf3~f4)+zszf3 sin(q:m+ynf3-f4)-2fl(Xp-ynfl-!-fz)
c= xzfg + f%

Ag = {[fg-L4Ynlf7-£3) WX p-ypf | HEp) Sinlbntynf3-f4-a Y (ypfs-fe)sinay
+[Xp-ynf1+£2+x(ynf5-f6)]cos(¢m+ynf3-f4-up)-Zp(ynfs-fb)cosap}sin Bp
-[{¥plte-ta-yn £7-03) 2 ) sin($mtynf3-f4)- (Zplfa-fa-Valf7-£3)]- Yy

coswm’rynfa-f4)+x[f3-f4-¥n(f7-f3)1]cos Pp

Ay = -[[£7(% -yt H2)H (g~ E4- V(S E3) i3l ynfs- o)} sintdmtynf3-fa-ap)
-{lf8-£4-ynlf7-£3)J63(Xp-ynf 1 +£2) - £ 1 #xf5}cos(bmtynf3-f4-ap)

-Ypfs sinap + Zyfs5 cos ap] sin By,
- [{¥ plEg-Ea-Vnl7-£3) 1342 pEq} coslrn +ynf3-Ea)

+{Zp[f8-f4-vn(f7-f3)]f3-Ypfv}sin(¢m+vnf3-f4)-x(f7-f3)]cos Bp

14
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AZ = -[{[fs-f4-yn(f7~f3)]f1f3+(f7-f3)f3(xp~ynf1+f2)}c08(¢m+ynf3-f4-np)
-(£1£7 - xf3f5) sin(Ypy + ynf3 - 4 - cp)] 8in Py
+{£3(£7-£3) [ Ypcos($m+ynf3-f4)+Z psin(Wm +ynf3-f4)]

2
~x[fg-f4-yylf7-3)]3}cos B,
A3 = £)£3(£7-£3)CO8 (Y +Ynf3-L4-ap)sin Ptxe5(f7-£3)con by
The integration with respect to y, in Eq. 18 may be carried out analytically.
The integration with reapect to x must be carried out numerically., Perform-

ing the integration with respect to y,, and since the numerical integration
with respect to x cannot be carried through the singularity, Eq. 18 becomes

f de+f de>+__‘.‘_’.3. (19)

Vg m=1 n=1 Xh Gmax xp.‘..( Gmax Vs
where
€=0 for m¥£ 1 or ynglyp
Ax
2 e— for m=1 and Yn = ¥p
2
%For |4ac - b2|>0,00001
3 A 2
Q _ A3Kn[ YA Vn/
2¢ |(a + by, + cy2)1/2
{ YA ya) ‘AYn/-’-
( 5b
AyKp + AzlH, - K,—
n n n4c [ Yg Ayn/Z
+
2y1/2
+ by, + .
c (a + by, + cyp) by, /2
¥ 3b 3b (15b2 3a>]
AK +A|H - K — ]~ A;]H — <K -
™n 21 'n an 3 an n8c2 e
+
c({4ac - bz)

(2b% - 4ac)y, + 2ab Ayn/Z

[ {a + by, + cytz\) 1/2 -8y, /2

*See footnote on next page.
15
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3b [ 3b 1562 3a
AKn+Az[Hp - Kyp — |- A3|Hp — - K, —
2¢ 2¢ 8¢t  2c
+
c3/2
b AYn/Z
lln[(a.-l~byA +cy§)1/2 + N/EyA-l- —”
2Nc))-ay, /2
2a 2a 10ab
2| AgK, + A H, - AK — - Aj[H, —- K,
¢ c 4c2
4ac - b2
[ by, +2a ]Avn/?- 2AgH,, 2cy,#b  ]AY¥n/2
+
(a+by, + cyg) 1/2 -Ay,/2 “4ac- b%

(a+byy +cy2V/ 2| ay /2
*For |4ac - b2| 2 0.00001

A 2
A3KNa b (27870
Qe |Nat—y,
bCZ 2\/; -Ayn./Z
8a
A K + A]H -K  —
2**n 31*n n b b AYn/?-
+ Na+ VA)
C2 2‘]; -Ayn/z
Aa Na  Wa Wa 12a3/2)
AK, ——+A5{H, — <K o |- A3lH -K
150 b 2i"n b LI 31"%n - n T o
+

c
B
In{Na + ——
[ 2Na v ~Ayn/2

*Under certain circumstances when x=xp, 4ac - b2 =0 (exactly or with-
in the accuracy of the computer), The solution takes a different form at

this point, Due to machine accuracy, the test is made on a small finite
quantity rather than on zero,

16
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8a2

3a
+Az|H—- K, —
c bc

4a 4a 3a
AOKn"'Al Hn"Kn'—' "AZ Hn-""Kn""
b b c

c

1 Ay, /2

b
V;:P-——-YA
Z\l; -Ayn/z

a3/2 a,3/?.,

H

-K
be " 2c2

+A,|H,

[ Na  wa Na  a3/2
- AO(Hn_""Kn""‘)" AI(Hn“""Kn
b 2¢ 2¢ be

-A3

a3/2 25/2 )] 1 ay,/2

Hp - Kp, ——

bc2

2c2
Na -Ay, /2

and where (AWY)B is the contribution to {W¥)B from the small region
surrounding the singularity, The determination of (AWY)p follows.

Figure 7 shows the smali region surrounding the singularity lying
on the blade ¢} = 0 and having its center at the point y, = Z‘?. The
imen

location of points within this region are given by the nond sional
coordinates y, and x,.

Singularity region

Y=¥n=Yp

X=X Z
. . . P
Singularity point, p L

FIG.7.

17
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Since these coordinates are nondimensionalized with the chord and pro-
peller radius respectively, they are very small compared to one, The
nondimensional coordinates in the X', Y', Z' system of points on the
blade ) = 0 are, from Eq.5, 7, and 10,

X=yf) -1,
= -x sin(yf3 - f4)
Z = x cos{yfj - fy) (20)
In the region surrounding the singularity,
X=x_+ XA

P

Assuming a linear variation of the functions of x over the region, the
expresgions for f) _ 4 are

£ = f25 + Lg%,
*a
*p

Xa
f4=f4 +(f8 " f4 ) —
p p p

where the f} _ 8p are defined by Eq, 10, Substituting these expressions
into Eq, 20 and utilizing the trigonometric identities for the sin and cos
of the sum.of angles, there is obtained

X= yflp - fzp + (yfsp - f6p)xA

Y

]

X
-(xp + xA.)sin(yf3p - f4p)008‘[y(f7p - f3p) - (f8p - f4p))-;: }

/] 3 XA
- (xp + xA)cos(yf3P - f4p)sm{[y(f7p - f3p) - (fsp - f4p)];—l
P

N
{

XA
= (xp + xA)cos(yf3p - f4p1009{[)'(f7p - £3p) - (fgp - f4p”""l

XA
= (xp + xp)sin(yf3, - f4p)8in[[y(f7p - f3p) - (fgp - fép)];—} (21)
p
18
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Restricting (x, /x._) = Ax/2x_ to be very small compared to one, 80
that . . . a/*pimax *p ’

| Xp X5
*sini[y(f7, - f3p) - (fgp - f4p)] — = {lylfq, - £3p) - (fgp - f4p)] —
Xpimax XpJmax

co

XA
[Y(f7p" f3p) - (fgp- f4p)]— =1
max

xA

1+ (—-) E (22)
*Xp /max
Equation 21 becomes

X= Yflp - pr + (Yf5p - f€>p)"t\
Y =-xp sin(y£3p - f4p)
- {sin(yf3, - £45) + cos(yfs, - £ )Wl fqy - £35) - (fgp, - L4}y
Z= xp cos(yf3p - f4p)
+ {cos(yfsy - f45) - sin(yf3, - £ )ylf7, - 3, = (£g, = T4 )}y (23)
Introducing again the expression for y within a strip,
Y=yn+YA=Yp+YA
using the trigonometric identities for the- sin and cos of the sum of

angles, and remembering the restriction that has been made concerning
(YAf3)max (see Eq. 12), Eq.23 becomes

X= Ypflp - pr + fleA + fSpYAxA + (ypfsp - f6p)xA
Y

-Xp sina, - x,f3, cos apYa

- f3p{cosay - sinayllyy + yallf7p - £35) = (fg, - f45)1}vaxs
- [sino.p + cos up[(yp + YA)(f7p - f3p) - (fsp - f4p)]}xA

Z = Xp cosay - xp£3p sinupyA

- 3y, {sino.p + cosal(yy + yalfzy - £3p) - (g - 541))]},2\::A
+'{cosuP - sineplly, + yaMfzp - £3p) - (fgp - f4p)l}xa  (24)

*These approximations imply certain restrictions on f7 and fg which
are discussed later.

19
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Using Eq.24 and 9, the expressions for the components of df and S in the
X', Y', Z' coordinate system are easily.ahbtained, : .o

dty dX! dX

— D — = R e

dxa dxa |y,=Constant dxa {y,=Constant

dix p
— -f, +f

5 6 5pY.

Rdx, PP P p’a

dty 4dY! dy

PR, - = R e

dxy  dxp ya=Constant dxp ya=Constant

dey
— = -sinap - coaap[(yp + yA)(f7p - £3p) - (f8p - £4p)]

A
~f3p{cosa, - sinapl(yy + yaMf7g - f3p) - (fgp - £45)1}va

dtz 4z az

—_— = — = R e

dxp dJﬁA, =Constant dxa ly, Constant

) £ Ya
diz .
= cosap - sinap[lyp + yalfzp - £3p) - (fgp - f4p)]

Rdx,

~£3p{sinay, + cosaplly, + yaMEzp - f3p) - (fap - fap)l}va

= X! o X! = -
Sx = X}, - X' = R(X,, - X)
Sx ‘
R = -f1pYa - f5pYa%a - (Yofsp = fop)%s
=Y .Yl = -
Sy=Yh- Y =R(Y,- )

Sy
—E- = xp€3p cosa,y, +f3p{cos ap - sin o.p[(yp + YA)(f’?p - f3p) - (f8p - f4p)]}yAxA

+ {sinnp + cos up[(yp + yA)(f7p - f3p) - (f‘gp - f4p)]}xA
=Z' «Z'=R -
SZ = Zp Z (Zp Z)

Sz
—; = xpf3p 8in apYa -‘Ff3p{sin o.p-é: cos np[(yp+ yA)(f7p - f3p)' - (f8p - f4p”}YAxA

-{coé,o.p - sinapl{yp + ya)(f7p - £3p) - (f8p - fap)l}xa (25)
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Making a linear approximation in Eq. 17 to the bound circulation

Aot sipgularity vegiom. . o L v @ N T
G
d
G G Gmax
= + XA
Gmax Gmax X=Xp dx X=Xp

using Eq. 2 to determine the components of d¢ and § in the X', ¥', Z!
coordinate system, discarding third and higher-order terms in the
products of the small quantities y, and x, in the expressions

Sxdlz - Szdx
st=s% 455+

and substituting into Eq. 15 yields the expressions for (AWF)g/vg -

(awglg 1 poyn/2 ) ax/2
—= - (Hy + KpypCyyp + Coyp)
Vs 2 J-ayn/2 -Ax/2
E + Fx 26
dx, dy, 2
A TA
(a1y% + bryax,, + ‘=1x1§)3/2
where
(dGmax
H = .
n
dy Y=¥n=Yp
d%Gmax
Kn 2 | c—
dy2  Jy=yn=yp
C) = -f]p sinPp - xpf3p cosPp

Cz = £35(f)p sin By + xpf3p o8 BR)ypllzp - £3p) - (fgp - f4pl]

G
E=
leax x:xp
! G
d
Gmax
F=
dx x:xp

21
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2 2:2
al-f1p+xpf3p. . ' o
by = 2015(ypfsp - f6p) + 2xpf3plypliry = £35) = (fgp - f4p)]

= PR . . . 2

The integrations in Eq. 26 are straightforward but because they lead to
lengthy expressions, they are not presented here, It suffices that

Eq. 26 can be integrated analytically through the singularity to obtain
the Cauchy principal value,

VELOCITY DUE TO FREE VORTICITY (Wg)p

The coordinates of a point on the helical sheets in the rectangular
X', Y', Z' coordinate system were given as Eq. ] and are repeated
here,

X! = qr tanf

Yl

-r sin({,, + a)

zt

r cos{y, + a) (1)

Assuming that the propeller is moderately loaded, the contraction of
the wake may be neglected. Hence, each vortex element of the free
vorticity sheets may be considered to lie on the helical sheet at a con-
stant radius, as indicated in Fig.8. Letting df be an infinitesimal

Vortex line element
of free vorticity sheet

r = Constant

FIG. 8.

length of a vortex line element making up the free vorticity sheets, the
components of d! in the X!, Y!, Z' system are obtained from Eq. 1 as
follows.

dty dx'

da da |r=Consiant

22
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ds

~— = r tan f

da

dty 4y

da da |r=Constant
diy

—— = -r cos{Yy, +a)
da

dty dz!

da da |r=Constant
dtz

— = -r sin(yy, + a) -
da

The coordinates in the X', Y', Z' system of the point p on the blade
¢) = 0 where the normal component of velocity is desired is designated
using the subscript p, as in the previous section.

X!', = aprp tan pp

Y. = -r, sina

]

P p P
1 -

Zp = rp c:osxo.p

The expression relating ap to the position on the blade, developed in the
preceding section, is

(27)

op = ¥pf3p - f4p

The X', Y¥', Z' components of the distance, S, from an element of
vorticity on one of the blades to the point p are obtained from Eq.l
and 27,
- !
Sy = Xp ar tanf

Sy = YF" + r sin{yy + a)
Sz = Zi,) - r cos(,, +a)

Introducing the nondimensional coordinates of Eq. 7, and letting
x tanP = \, the components of d? and S become

dix
= A

Rda

23
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dlY
—— = =X cos{, + al..
Kda '

d1z,
—— = -x sin{y, . + a)
Rda m

Sx
—_— Xp --al

R

— zp - x cos(Y,, + a) (28)
where
Xp = Qp(”x:xp
Yp = ‘xP Sin Qp
Zp = Xp cosap
Lifting-line solutions for free-running, unskewed, optimum or lightly
loaded non-optimum propellers yield A = Constant, i. e. » independent of
the spanwise station x. This is not true for moderately loaded, non-
optimum, wake-adapted propellers, which are of interest here. To be

able to handle this variation in A, the blades are broken up into chord-
wise strips bounded by lines x = Constant, as illustrated in Fig.9.

Lines along x = Constant

-— —— ——
- omme oma — handil N
- s ——— e -

__—Axn—--L~ *a

Xn — I
1 e —
________4.

FIG.9.
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Due to the great simplification in the mathematical expressions which

result, the location of points along a strip are:descyihed.intormaafthe,.. . .
angle a corresponding to the center of the strip. THhis causes the strips

not to fit the blade shape exactly, as illustrated in Fig,9 by the fact that

the ends of the atrips do not coincide with the leading edge, However,

by using a fairly large number of strips, the blade shape can be repre-
sented quite accurateiy. For each strip there may be written

R NN (29)

The subscript n takes on values of 1, 2, 3, ..., i, wherei is the num-
ber of strips. With the blade broken up into a fairly large number of
strips, the variation in \ can be represented with sufficient accuracy
by a linear approximation across each strip.

d\
A= (Nx=x, * (E—x Xa (30)
X=Xp

Substituting Eq.29 and 30 in Eq. 28, the expressions for the components
of df and S become

dlx dx
— = (N gy, +|— x
Rda 0P ldxfyexy -
dty
— = Xy co8(Yp, +a) - cos(P, +a)x,
Rda
dig
—— = =X, 8in(Yp, +a} - sin(P, + a)x,
Rda 1
Sx dx
— = Xp - a{Nx=xp - @ |{— XA
dx X=Xp
Sy
. -E- = Yp +x, sin(g +a) + sin(,, +a)x,
S5z
-1-1— =25 = %, cos(y, +a) - cos{, +a)x, (31)

The Biot-Savart law, Eq. 14, is used to compute the induced ve-
locities from the free vorticity, Since only the normal component of
velocity is desired, Eq, 15 gives the desired relationship. The strength,
I', of the vortex element as a function of the spanwise and chordwise

25
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distribution of free vorticity is determined as follows, The value of
1 at thetraidivg edgeof-ite-biade,” P ¢Figl8), intermsof the bound
circulation T is given by,

dr

T. = -—dx
TE
dx

A factor k is defined as the ratio of the strength ' at any chordwise
station to the strength at the trailing edge, I'p.

r

Introducing once again the nondimensional bound circulation G= I'/nDvg
the expression for I'is

r dG
= -k — dx (32)
wDvg dx

Considering an infinitesimal area on the blade bounded by lines

y = Constant and x = Constant and utilizing the fact that the sum of the
bound circulation and free vorticity entering the area must equal the
sum of the bound circulation and free vorticity leaving the area, the
expression, illustrated in Fig. 10, for k may be determined.

P
lae]

]

&
Y]
g

1,0
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1 Y dG . .
For 02y%1 k= f AT ay Fory>1 k=1
Gmax /0 dy

This simple relationship between 'k and y, which is independent of the
spanwise station, results from having chosen the elements of bound
circulation along lines y = Constant. To obtain k as a function of a, the
relation between a and y developed in the previous section is used.

e= y(f3)>t:=xﬂ N (f4)x=xn

Restricting the spanwise distribution of bound circulation to one that
lends itself to an accurate piecewise approximation by parabolic sec-
tions, as discussed previously, Eq.32 may be written, for each chord-

wige strip,
T dG %G
2 k]~ + | — xp |dxa (33)
mDvg dx [x=xp dx? [x=xp

Equation 2 allows the components of df and S in the X', Y, Z' coordi-
nate system to be determined from their components in the X', Y', 2!

system, given by Eq.31. Substituting these X', Y', Z' components and
Eq. 33 into Eq. 15, the expression for the normal component of induced
velocity due to the {ree vorticity becomes

(Wp 1 f: 2 J-o.u Axp /2
= = k f
2 m=] n=1 JaLg J-

Vs Axp/2

Aol t(AgTnt AjI)xa+(A T+ ARl xS+ ApT X3

dxpda (34)
(a + be + c:'ci):‘}/Z
where
dG
In = |
dx X=Xp
d2G
Jn = |—
dxz X=Xn
a= Zprn sin(Y,, +a) - Zprn cos(y,, +a)
2 2 2 2
+(Xp~—o.Mn) +Yp+Zp+xn
b= 2Yp sin(¢, +a) - ZZp cos(Y, +a) + 2x,

- 2aNp(Xp - aMp)

27
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= 1 - a®Ng

(2]
i

>
S
1

- Mn["n cos(¥, +a - up) + Yp sin ap - Zp cos up]}sin ﬁp

+ xn[Yp sin(, +a) - Z, cos(Y, + a) + x,]cos Bp

g
I

= -{[(XP - aM;) - o.Nnxn] sin(¢, +a - np)
- (M, + Npxp)cos(d,  +a - o.p) - Nn(Yp sinap - Zp cos o.p)}sin ﬁp

+[Yp sin(by +a) - Zp cosy, +a) + 2xp]cos By

A = Npla sin($, +a - up) + cos(y, +a - o.p)]sin ﬁp + cos pp
and where
My = (My=x,,
d\
Nn = | ——
dx X=Xp

The integration with respect to x, in Eq. 34 may be carried out analyti-
cally, The integration with respect to a must be carried out numeri-
cally. Performing the integration with respect to x,, and since the
numerical integration with respect to a cannot be carried through the
singularity, Eq.34 becomes

ap-€ ay ’ (A“,§)F
f P kQda + f deu) | S — (35)
aLLE apte

i

Wop 1 zg: E

Vg

™
3
[}
[
1}
—

where
€=0 for m# 1 or xn # Xp

Aa
€= — for m
2

]
r—

and Xn = Xp
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*Fox |4ac - b2| $0,00001
- Aan Xi ' Axt:l/‘
(a + bx, + cxg) 1/2 ;.Axn/z

Q=

c

3b
AIJn + AZ [n - :In-—)

2¢/ [(2b2 - dac)x, + 2ab]4*n/2

+ Z
cldac - b?) [ (a + bx, + ch)"'/E -Axn/Z

3b
Al‘rn + AT, - Jy—
2¢

=l

ln[(a + be + cxﬁ)l/z +'JE7:A +T-
2Nc

+

c3/2 -Axn/Z

2a
Z(Aan + AIIn - A?.Jn"") Axn/?.

c bx, + 2a

4ac - b2 l(a + bx, + cxg) l/‘i].Axn/z

2801 [ 2Zexptb Axp/2

4ac - b2 I_(a + bx, + cxﬁ) 1/2 -Axp/2

*For |4ac - b%| < 0.00001

Q= + XA
2 N2

2\a ( 2Na Wa )

Ayl ( b )Axn/l
= a

L - Jp—

AlJn —+ A,
b c

b

+ [m (»fa’ + —-b—- xA)] “af?

c 2Na -Axp/2

*Under certain circumstances when a = ay, 4ac-b“=0, The solu-
tion takes a different form at this point, Due to machine accuracy, the
test is made on a small finite quantity rather than on zero,
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4a 4a 3a
I AZ(In—— - J’n-—)

AnJ 4+ A
0°n 7 b b c 1 axp/2
c b

~/§+-—-xA
2Na ~Axn/2
{ ( Na Na Na  a3/2 ( a3/2 a3/2)]

“-lAg |, —eT —— - Ayl —=-T +A,5|[I -J

O\n b an ! an n bc 2» n be n 2c2

1 Axp/2

b 2
(‘\E-l-—-—-xA) i
Na -A%n/2

and where (AWY)F is the contribution to (WY)p from the small region
surrounding the singularity. The determination of (AWY)p will follow
shortly, The value of a at the leading edge, ap,g, follows from the
work in the previous section,

eLE = '(f‘i)x=xn

The value of the upper limit of integration, a,, is theoretically in-
finity; however, as is discussed subsequently, the integration may be
truncated at a rather small value of a,,. Assuming that the integration
is carried out q propeller diameters {(measured axially) behind the
point p where the velocity is desired, the expression for ay is

_ 2q + °‘p(>‘)x=xE

()\)x:xn

ay

This follows from the first of Eq. 1.

Since the lifting-surface solution starts from the lifting-line solu-
tion, the angularity cf the flow due to the lifting-line solution has
already been accounted for, Hence, only the difference between the
normal component of velocity on-the lifting surface and the normal
component of velocity at the lifting line from the lifting-line solution
is desired. It is of course understood that both these velocities are
determined at the same radius., For free-running, optimum or lightly
loaded non-optimum propellers where the helical shects form a true
helix, i.e., A = x tanp = Constant, it.is necessary in determining this
difference to choose a value of q which assures only that the integrations
arc carried cut to a point bebind the trailing edge. This is true because
for the true helix the integration from q diameters behind any point (at
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a given radius) to infinity will be the same, so that upon taking the dif-
ference this contribution cancels out.exactly,...This fact has.been taken
advantage of by several investigators in calculating lifting-surface
corrections for free-running, optimum, or lightly loaded non-optimum
propellers, For all other propellers, such as the moderatiely loaded,
non-optimum, wake-adapted propellers of interest here, the helical
sheets do not form a true helix and this canceling effect does not occur.
Luckily for these cases, the difference between the lifting-surface
solution and the lifting-line solution is strongly dependent on q only for
small values of q. Thus it is necessary to carry out the integration
-only a few propeller diameters behind the two points when determining
this difference, A great saving in computer time results from this
approach, since numerical integrations to great distances behind the
propeller are not needed,

The normal component of velocity at the lifting line from a lifting-
line solution where the integration is carried out q propeller diameters
behind the lifting line is needed to determine the difference discussed
above. This is determined from Eq. 35 by putting ap = 0, k = 1, and
ignoring the integral from apLE to ap - €. The expression for (AWY)F
takes a different form for the lifting-line solution, as will be indicated
later,

Figure 11 shows the small region surrounding the singularity. This
region lies on the blade ) = 0 and has its center at the point xj = Xp.

Singularity region - A0~
~152f | Ssingularity
- point, p
le /
4
4 - -
d O.—Clp ' au
(The angle a is indi- X=Kn=Xp
cated here as a distance
to simplify drawing) .L

FIG. 11.

The location of points within this region is given by the nondimension»l
coordinate xp and the angle ap. Since xp is nondimensionalized with
respect to the propeller radius, it is very small compared to one, Also,
ap is restricted to be very small comparced to one. The nondimensional
coordinates in the X', Y', Z' system of points on the blade q;l =0 are,
from Eq. 1 and 7
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X =ax tanf = a)
Y = -x sina

Z =: cosa

In the region surrounding the singularity,

X =xptxp=Xp+ X,

a=ap+tay

(36)

Substituting these expressions and Eq. 30 into Eq. 36, and making use of
the trigenometric identities for the sin and cos of the sum of angles,

dx

d\
X = (up + QA) (X)x:xp + | — XA
X'—'-'Xp

Y

-(xp + %, )(sina

cosa, + cosa sinaA)

P P

(xp + xp)(cosay cosap - sinap sinay)

(37)

Since {ap)max = Aa/2 is restricted to be very small compared to one

(in radian measure),

cosap =1,

sin ap = a,

Putting these approximations in Eq. 37, there is obtained

d)\) d\
X = ay(A)yzx, + @ (— Xp +{— 04 T (Ny=y, Oa
A P X=Xp X=Xp P

Y

-Xp sin Qp

dx dx

- sino.pr - cos upro.A - xp cos apla

Z = xp cos o.p + cos o.pr - smo.pro.A - xp sin o.po.A

(38)

Using Eq. 38 and the expressions on page 24 for XpYpZp, the expressions
for the components of df and S in the X!, Y', Z' coordinate system are

easily obtained,

diy dX' dXx
— E e——— = R —
dap dap [xp=Constant dap |xp=Constant
dix dx
= (Nyg=x_ *[— “A
RdQA p dx x:xp
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diy 4dY! dy
—_— T ——— = R e
dap day xA=Constant dap xp=Constant
dty
= -X, cosa,_. - cosa,.X
Rda, P p pTA
dtz dZ! dZ
— D e— = R «cere
dap dap ¥p=Constant dap x5 =Constant
dez
= -X, sina, - Sina Xp
Rda, p p P
SX=X!')-X'=R(XP—X)
Sx (d)\) (d)\)
—_— = | — xA - [ — XAQA - (K) = OA
R P dx x:xp dx X=X x xp
SY=Y[')-Yl=R(Yp-Y)
Sy
—I;- = smo.pr + cos upro.A + x cosapuA
SZ=Zl'3-Z'=R(Zp-Z)
Sz
-E- = -COS upr + Smapro.A + x_. sin upuA

Making a lincar approximation in Eq. 33 to k across the singularity

region,

k= (lg=q, * (;-;) a,
0.=0.p

dk

using Eq. 2 to detcrmine the components of df and S in the X', Y', Z'
coordinate system, discarding third and higher-order terms in the
products of the small quantities x5 and ap in the expression
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s%=s% + 8% +55

and substituting into Eq, 15 yields the expression for (AWY)p.

Aa/2

Vg 2

(aWFi p 1 pAxp/2 N
— (In + JnxA)(Cle + szA)
-axn/2 -Aa/2

ko + kl QA

b daAdxA
(a1x2 + byxsa, + ¢ a2)3/2

where

dG

dx

d?g
Jn= ——

dxz )x:xn;—.xp

I, =

X=Xn=Xp

kg = (k)a=up

(dk)
ky=|—

1

da Q:ap

Ci =M, szinﬁp + xp cos By

Cy =N, sin{’:p + cos ﬁp

and where

dx )x=xn=xp

34
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For the lifting-line solution, where the point p is at the front edge of the
helical sheet and there isna variatian.in-the. strength of the-sheetowith -
respect to a, the lower limit of integration with respect to a, should be
zero instead of -Aa/2, and the values of kg and k] should be one and
zero, respectively. The integrations in Eq, 39 can be carried out ana-
lytically through the singularity to obtain the Cauchy principal value.
Thesec integrations lead to lengthy expressions that are not presented
here.

VELOCITY DUE TO BLADE THICKNESS (W¥)T

In calculating the effect of blade thickness, the blades are broken
up into spanwise strips like those used in the section on bound circula-
tion. Hence, many expressions take the same form and are taken
directly from that section,

The components of the distance, S, from a point on one of the blades
to the point p where the velocity is desired are given by Eq. 13 and are
repeated here,

E=xp-y“f1+f2-fly“ .

Sy
_E- = Yp + x Sin(tl).rn + Ynf3 - f4, + xf3 cos(q:m + ‘/nf3 - £4)YA

Sz
-;— = Z? - x cos(P + yof3 - £4) + xf3 sin(,, + v f3 - f4)y,  (13)

Since the velocity at point p caused by a source (reprcsenting the blade
thickness) on one of the blades is desired, the source potential may be
written

nl n 1

"2- 2 2
4 S 4w SXTSY+SZ

where n is the source strength,

The components of the induced velocity at point p in the X', Y', Z!
dircctions from the source are given by

9% ) o 5x
Tasy - 4n (S% + 5% + 55)3/2
0 ) n Sy
E T T AT
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8¢ n Sz

e Wy = e

Z 2 4+ 52 + 55)3/2
3s, am (5§ + 5% + 5513/

Equation 2 allows the normal component of velocity, W+, to be de-
termined from the preceding result. The normal component of velocity

at point p due to a source of infinitesimal strength on one of the blades’
is then written

dn Sy cos pp + Sy cos ap 8in pp + Sy sinap sin pp

(40)
4m (s§ + S + 53)3/2

The infinitesimal source strength can be written as a product of a sur-
face source density on the helical sheet, u, and an infinitesimal area,
dA, of the sheet,

dn = pdA (41)

The source density can be related to the blade-section thickness distri-
bution as is done in slender-airfoil theory and illustrated in Fig. 12,

dz *
p=2V— (42)
dy
Sheet of sources
Normal velocity at sheet of local density,p
\\ |
———d
d -
y=2 =t c
C C
Vng d2 vy =
vV dy 2
. =2V dz
o o P- d—y—
FIG. 12,

*Since dz/dy goes to infinity as y = 0 for essentially all thickness

forms, the ncse shape is modified slightly to retain a finite dz/dy at
vy =0,
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The relative velocity V of the blade section and the fluid is given approxi-
mately for a propeller by

Vo= Vv + W) 2 + (wr - Wy)2

where v is the local axial inflow velocity to the propeller, w is the angu-
lar velocity of the propeller, and W, and W, are the axial and tangential
components of induced velocity from the lifting-line solution. Assuming
that the thickness distribution function, z = f(y}, is the same at all span-
wise stations except for a multiplier that is a function of x only,} it is
necessary to specify it at only one station. Hence,

dz dz
— -—.—) rR (43)
dy dy /Ref

where rp is the ratio of the percent thickness of the blade section at any
spanwise station to the percent thickness at the reference station. The
expression for the infinitesimal area, dA, of the helical sheets in terms
of the nondimensional coordinates y and x can be determined by thé use
of Eq.4, 5, 7, and 10 and relationships involving direction cosines. The
expression is

dA = RC\[{yfs - fg)cosp + [fg - f4 - ylf7 - £3)]sinp)é + 1 dydx

Since the variation in y across a strip is not large, a fairly accurate
approximate expression for dA may be obtained by setting y equal to
the value at the center of the strip, y,.

dA = RCF dydx (44)

where

Fr = V[(vafs - fe)cosp + fg - f4 - yolfz - £3)]sinp)? + 1

Substituting Eq.41, 42, 43, and 44 into Eq. 40, the normal component of
velocity at point p due to the thickness effect of an infinitesimal area on
one of the blades becomes

I This type of relation holds approximately for any of the NACA
basic thickness-form groups. For ecxample, the z=£(Y) for the NACA
65-008 form can be obtained approximately from that for the NACA 65-
010 by multiplying by 8/10,
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dwy |
=- iOFr\
" Vg ™ )
(dz) Sx , S Sy,
— — cosfP +~——cosa_sinf_ + —sina  sing
dy/Ref| R P PTP R L
4
2 o2 a2.3/2 dydx (45)
S S S
X + Y + Z
RZ RZ R2
where vV C

fg = f(x) = — —rp
Vs

Approximating the thickness distribution function across each strip

by a parabola,
dz dz a2z
dy/Ref \dyly=y, \dy¢/y=y,

Substituting Eq. 46 into Eq. 45, and indicating the integration“over the
blades, the expression for the normal component of induced velocity
due to blade thickness becomes

(Wglp 1 ,Sg, i.: 1 . ayn/2
n A Lt f 0" n J:

Ayn/2

AgSy + (AgTy, + AySp)ys + AT, ve

dy dx  (47)
(a+by, + cy§)3/2 a

dz
Sn= —

dy )Y=Yn

(dzz)

T, = |——

n

dy? ¥Y=¥n

where

5
o
!

= (Xp - Yuf) + fp)cos pp

+ [Yp cosay + Zp sinay, +x sin(y . + vy, f3 - f4 - o.p)]sm Bp

R
!

= -f1 cos pp + x£3 cos(\pm + yn£3 - f4 - o.p)sin pp
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.
]

Zpr sin(y, + y,f3 - £4) - Zpr cos(, + y,i3 - fy)

2
(X = yofy #6202 + Y24 20+ %P

o
u

ZYPXf3 COS(lpm + ynf3 - f4)
+ 2Z.x€3 sinldyy, + ynf3 - £4) = 26)(Xp = yuf) + £2)

c xzf‘_?; + f‘}

The integration with respect to y, in Eq.47 can be carried out analyti-
cally. The integration with respect to x must be carried out numeri-
cally., Carrying out the integration with respect to y, and since the
numerical integration with respect to x cannot be carried through the
singularity, Eq.47 becomes

(Wglp 1 & 3 Xp- € 1 (BWH)T
= - 2: Z; foF,Qdx + f foF ,Qdx | + ———r
Vs w xpte

m=}l n=1 Xh Vg

where
¢=0 for m;ll or Yni(Yp
Ax

€=-— for m=1] and Yn = ¥p
2

*For |4ac - b2| > 0.00001

2A0S,

Q-

2cyp + b Ayn/2
4ac - bl

(a + by, + cyg) 1/2 -ay, /2

2(AgT, + A|S,) by, + 2a Ay, /2

dac - b2 |(a+ by, + cyd) /2]
Ya T €Y ay, /2
A)Tn  [(2b% - dac)ys + 2ab ]Ayn/z
+ »
c(dac - b2) | (a + by, + cyg) 1/2 -ay, /2
AT, b 1]4Yn/2
+ In (a+byA+cyAz)1/Z+’~[gy + —
o3/2 2Ne | |-ayn/2

*Under certain circumstances when x=x,, 4ac - b2=0 {exactly or
within the accuracy of the computer). The solution takes a different
form at this point. Duc to machine accuracy, the test is made on a
small finite quantity rather than on zero.
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*For |4ac - b%| 20.00001
N Na N ey 1 8yn/2
ol - mg ) o )]

Q= -

S,~ - T, -
nb an

4a
AgT, + A5, - Ty —l-:-) | Ayn/z
) c N b
: +-Z_'~/§ 7 -Ay,/2

a b ay,/2

be 2Na ..Ayn/z

and where (AWy) is the contribution to (W) from the small region
surrounding the singularity., The determination of (AW¥)T follows.

The small region surrounding the singularity is similar to that in
the section on bound circulation and is shown in Fig.7. The expressions
for the X', Y', Z' components of S inside the singularity region are
given by Eq. 25 and repeated here.

S
X
""R—'—"flpyA - f5pYaxa = (ypfsp = fop)xa

S

Y .
-R— =xpf3p cosapy, + f3p{cos ap - 8in o.p[(yp-i- yA)(f7p - f3p)-(f3p - f4p)]} YaXa
+ [sinup + cos c\p[(yp + YA)(f’Ip - f3p) - (fgp - £4p)]}xA

5z
—I-{— = xpf3p sin o,pyA + £3P{sin O.p +cos O.p[( yp+ YA)(f7p - f3p)- fsp - f4p)]} YaXa

- {cos ap - sinup[(yp + yA)(f—,p - f3p) - (f8p - f4p)]}xA (25)
Making a linear approximation of fp across the region,
dfg

fo = (fn)ece + |—
0 (O)x—xp

X
A
dx )x=xP
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using the value of F at the center of the region,

Fn = (Fn)xzxp
Yn=Yp

_

P

discarding third and higher-order terms in the products of the small

quantities ya and xp in the expressions

dy
2

dz
(-—-— )R t-(SX cos pp + Sy cos ap sin pp + Sz sin ap sin ﬁp)
e

2. 2, g2
5% = 5% + 55 + 55

substituting into Eq. 45 and indicating the integration over the region,

the expression for (AW¥)y is

awgp 1 ax/2 8yn/2
—— ==F, f (A + Bx,) f
™ - -Ayn/2

Vs ax/2

CoxA + C 1XaYa

dyadxs (48)

where

. 2
Fp = \/{(Ypfsp - fép) cos ﬁp + [fgp - f4p - yp(f7p - f3p)]sm pp} +1

A= (fO)x=xp

dfp
B = |
dx x=xp

Co = Sp{lyplfzp - £3p) - (fg, = f4p)]sinp,

9]
!

dz
Sn= —
d} y:yn=yp

dzz
Tn =} —

dy‘)y=yn=yp

- (Ypfsp - fép) cos ﬁp}
= To{lyplfzp - f3p) - (fg, - fap)lsinBy - (ypfsy - fop) cos By

+ Sn(£7p sin Bp - fSp cos [3p)
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ay = (ypfsp - fp)? + 1+ [ypll7p - £3p) - (fgp - fap)]®

b = &t p(yptsp = fopl T Xpt3pl YpliTp - £3p) ="irgp = T4pls
= 2 4 x2f2

Cl = flp ¥ xpf3p

The integration in Eq.48 can be carried out analytically thxough the
singularity to determine the Cauchy principal value. Due to the lengthy
expression that results, this operation is not shown here,

DETERMINATION OF CAMBER LINES
FROM NORMAL COMPONENT OF INDUCED VELOCITY

The total normal component of induced velocity desired for comput-
ing the camber lines is [

Wy =(WYlp +(WYIF - (WY)rLL + (WT)T

where (W¥)py, is the normal component of induced velocity at the
lifting line from the lifting-line solution. This component must be sub-
tracted since the angularity of the flow due to the lifting-line solution
has already been accounted for. This point was discussed in detail in
the section on free vorticity, The nomenclature used in describing the
camber lines is given in Fig. 13.

te——r———— C :'

Ah =-?—
c Ah
Y 1
0 1.0
d
y 2
C
FIG, 13,

The camber lines are approximated by a power series of j + 1 terms.

h=ag+ay+ a2y2+a3y3+--- +ajyj
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The slape of the camber line is related to the normal component of in-
duced-veloctty-oy

dh Wy
dy v
Hence,
WY--a +2a,y + 3a3y% + o0 4 jayd]
T T ALt ey Ay jayy

If WY is determined at j values of y across the blade, there result

j lincar equations in the j unknowns, aj. Upon solving for the aj, the
camber offset, Ah, and the variation of the pitch angle from the lifting
line value, y, are determined from

a-

Y= - i

j
i=]

Ah = (y - Da + (y - l)a.l-i-(yZ - NDag + - -!-(yj - Daj (49)

COMPUTER PROGRAMS

The foregoing equations for the solution of the induced velocities and
the camber lincs were programmed on an IBM 7090 computer. To fa-
cilitate program checkout, four separate programs were written: (1)
solution of induced velocities due to bound circulation, (2) solution of
induced vclocities due to free vorticity, (3) solution of induced velocities
due to blade thickness, and {4) solution of camber lines and angles of
attack from induced velocities. The induction factor lifting-line solution
of Lerbs (Ref.2) was also programmed on the 7090 computer because it
serves as the starting point of the lifting-surface solution. These five
programs were thoroughly checked out against hand calculations and
special cases for which exact solutions can be obtained, Some of the
results and some typical design calculaticri. for a wake-adapted pro-
peller will be given in a future report on numerical results from the
lifting -surface theorv.

Simpson's rule was used in these programs when numerical integra-
tions were needed, Although there are methods superior to Simpson's
rule, it appeared more advantageous to gain accuracy by using more
points in the numerical integration than to use a more complicated inte-
gration technique,

Examination of the foregoing mathematical developments shcws that
first and second derivatives of various functions are needed as inputs
to the solution, Normally, these functions are known only as a table of
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discrete values and determination of meaningful third or higher deriva-
tives-is very difficult. Consequently, the approach takew trathe-pres -
ceding mathematical developments was adepted, e.g., low-order ap-
proximations (involving at most second derivatives) were used across
the strips and accuracy obtained by using many strips. The needed
first and second derivatives could then be determined through a 7090
computer program existing at' NOTS that allows a sliding polynomial

fit by least squares to the discrete input data and outputs first and
second der:.vatives,

RESTRICTION ON BLADE SHAPE
Blade shapes having rounded tips, as illustrated in Fig., 14, cannot

be handled by this method because of the behavior of certain functicns
that appear in the numerical integrations.

Allowable blade tip shape

Round tip shape
which cannot be
handled by design
method

FIG, 14, - -

For rounded tips,

d[2(C/D) sin ] )
5 = — = OO
dx
d[2(L/D) sinB]
f6 = — - D
dx
Tas x =]
d[2(C/D) cos p]
fj = — - OO .7
dx
d[2(L/D) cos ]
£8 = — - 00
dx J
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Also, the approximations of Eq, 22 can be made valid only if f7 and fg
do nat.become excessively large, Hence, this method is restricted to
blade shapes that have a finite chord at the tip, as shown in Fig. 14,
Since such a modification to the more usual rounded tip can result in
at most a very small loss in propeller efficiency, no significant loss
in the method's usefulness is caused by this blade-shape restriction,

DISCUSSION

The approach taken in the preceding work has been to obt2in a satis-
factory engineering solution to a difficult problem rather than to attempt
an elegant development from a mathematical point of view, Therefore,
this method must be used with a certain amount of engineering judgment
in such things as the number and width of the strips into which the blades
are divided and the size of the singularity region, The check solutions
and design calculations that have been run to date provided sufficient
knowledge for these judgments to be made now on a rational basis. A
further discussion of this point, along with typical values, will be given
in a future report presenting numerical results from the lifting-surface
theory.

Verification of an interesting point has occurred in the calculations
that have been run. For unskewed, free-running, optimum, or lightly
loaded non-optimum (X = x tan = Constant) propellers having symmet-
rical blade shape, symmetrical chordwise loading, and negligible thick-
ness, the pitch given by the lifting-surface solution is identical to that
from the lifting-line solution (y in Eq. 49 equals zero for all spanwise
stations). This point has been referred to by several investigators.
Hence, the pitch correction for such propellers arises solely from
blade thickness,

CONCLUSIONS AND FUTURE WORK

The lifting-surface design method, with the aid of a high-speed
computer, allows single-rotating, wake-adapted propellers of nearly
arbitrary shape and loading to be designed without the need for the
many assumptions and approximations involved in the methods that can
be carried out with a hand calculator. Since the mathematical model
accounts for nearly all parts of the physical propeller system in a
fairly exact manner, there is rcason to believe that propzllers designed
by this lifting-surface method will perform to specification. A definite
conclusion cannot be made, of course, until propellers are designed and
tested.

In torpedo design, counterrotating propeliers are usually employed
to obtain a torque balance. In order to apply the lifting-surface method,
a lifting-line solution is under development for counterrotating propellers
that will serve as the starting point for application of the lifting-surface
solution to each propeller. The effect of each propeller on itself is
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determined by a slightly modified version of Lerbs' induction-factor
method that allows the effect of the interference velocities (those in-
duced at one propeller by the other) to be accounted for in the relauve
flow at the lifting line and also allows application to propellers having.
a finite circulation at the hub,

The mean axial-induced velocities at one propeller induced by the
other are obtained by replacing the finitely bladed propeller with an
infinitely bladed propeller having the same radial thrust distribution.
The mean tangential-induced velocities at the rear propeller caused by
the front propeller are determined from Stokes' theorem. Continuity
effects due to hub taper are accounted for in an approximate manner.

The one possibly important factor in propeller design, which to
date has not been thoroughly investigated, is the effect of the hub
boundary condition. Work has been done on optimum propelliers where
the hub boundary condition was satisfied in the ultimate wake; however,
it has not been shown that this bears any relation to satisfying the
boundary condition in the vicinity of the propeller. The possibility of
satisfying the hub boundary condition in the vicinity of the propeller by
using a surface source density on the hub is being considered, A
method similar to that used by Smith and Hess (Ref, 12) would be used.
Until the hub boundary condition is examined in some such fairly rigor-
ous fashion, there will always remain a doubt as to the adequacy of
even a lifting-surface design method.

Negative Numbers of Illustrations: None
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